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Motivation 
•  EDL system performance influenced by two vehicle 

parameters:   

 
•  Ballistic coefficient (β) should be as low as possible for 

heating, deceleration, and timeline 
•  Lift-to-drag ratio (L/D) may be needed to satisfy other 

mission requirements, like precision landing 
•  Drag area (CDA) is the common denominator 

–  L/D should not be attained through large reductions in CDA 
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Aeroshell Design 
•  Aeroshell shape design is a trade-off between 

drag, stability, heating, packaging, and CG 
placement 

•  Shape selection is dependent on specific 
mission and flight system requirements 

drag stability minimize radiation 
for high-speed Earth 
return 

non-equilibrium 
aerothermodynamics 

Primary 
driver: 
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Present Investigation 
•  Objective: Maximize a multi-objective function of drag, stability, and CG 

placement, subject to constraints on L/D, volume, and size 
–  Aerothermodynamic constraints not considered yet 
–  Shoulder geometry not considered yet 
 

•  Formulate as an optimization problem: 
–  Maximize:  f = w1*CDA – w2*Cm,α – w3*|CG offset| 

•  Subject to:  Specified L/D, volume, and size constraints 
•  By varying:  Aeroshell shape 
•  w1, w2, and w3 are user-defined parameters that provide normalization and weighting 
•  For this investigation, drag, stability, and CG offset objectives are normalized to the 

same order of magnitude 
 

•  Approach: 
–  Hypersonic aerodynamic analysis 
–  Shape representation 
–  Shape optimization 
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Hypersonic Aerodynamics 
•  Newtonian flow theory 

–  Simple, analytic technique 
–  Only requires description of aeroshell geometry (impact method) 

•  Panel methods written in MATLAB 

•  Aerodynamic forces and moments computed from surface 
pressure (Cp) distribution 
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Shape Representation 

Approaches considered, increasing in design  
freedom and complexity: 

1)  Analytic shapes 
•  Parameterized in terms of cone angles, nose radii, etc. 

2)  Surfaces of revolution 
•  Spline profile revolved around centerline 

3)  Spline surfaces 
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•  Sphere-cone aeroshell 
à 4 parameters/design variables 

–  Nose radius 
–  Cone angle 
–  Maximum diameter 
–  Angle of attack 

•  Ellipsled aeroshell  
à 6 parameters/design variables 

–  Top and bottom nose radii 
–  Nose width 
–  Nose length 
–  Body length 
–  Angle of attack 

Analytic Shape 
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•  Position of control points defines axial profile 
–  1st control point fixed to generate a closed forebody 
–  Last control point constrained to define aeroshell length 
–  Remaining control points have 2 degrees of freedom 

•  Spline generated and revolved around the centerline 

Surfaces of Revolution 
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14 design variables 
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General Spline Surfaces 
•  Spline surfaces are generated from a net of control 

points 
–   Spline surface theory is a direct extension of spline curve theory 

36 design variables 
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Optimization 

•  Geometry and aerodynamics analyses input into 
Phoenix ModelCenter for optimization 

•  Gradient-based and genetic algorithms used 
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Example Application 

•  Analytic sphere-cone vs. SOR vs. general 
surface 

•  MSL mission used to define constraints 
– L/D = 0.24 
– Volume = 18 m3 

– Size: Fit within a 4.5 m x 4.5 m x 2.75 m 
volume 
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Analytic Reference vs. MSL 

Parameter Value 
CD 1.6068 
Cm,α -0.1785 
(CG offset)/Lref 0.02812 
 

αtrim = -15.50° 

V∞ V∞ 

αtrim = -16.50° 

Parameter Value 
CD ~1.5 
(CG offset)/Lref 0.02150 
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Analytic vs. SOR 

Parameter Value 
CD 1.6068 
Cm,α -0.1785 
(CG offset)/Lref 0.02812 
 

αtrim = -15.50° αtrim = -14.76° 

V∞ V∞ 

Parameter Value % Difference 
CD 1.6827 +4.72% 
Cm,α -0.1552 +13.07% 
(CG offset)/Lref 0.02228 -20.77% 
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Analytic vs. General Surface 

Parameter Value 
CD 1.6068 
Cm.α  -0.1785 
(CG offset)/Lref 0.02812 
 

αtrim = -15.50° 

V∞ V∞ 

αtrim = -15.87° 

Parameter Value % Difference 
CD 1.5140 -5.78% 
Cm,α  -0.2408 -34.91% 
(CG offset)/Lref 0.00558 -80.16% 
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Summary 
•  Developed capability to trade aeroshell drag, stability, 

and CG placement in aeroshell shape design 

•  Increasing levels of design freedom and complexity 
available 

•  Compared shapes generated from MSL constraints  
–  Results depend on user-defined weightings 
–  SOR provides 5% drag improvement for 13% stability penalty, 

with the CG 21% closer to centerline 
–  General surface provides 35% stability benefit for 6% drag 

decrement, with the CG almost at the centroid 
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Future Work 
•  Add aerothermodynamic constraints 

–  Nose and shoulder blunting 

•  Consider other spline techniques 
–  Non-uniform rational B-splines (NURBS) to precisely represent 

analytic shapes like conics and quadric surfaces 
–  Convert from cartesian to polar coordinates for the general 

surface representation to align with physical constraints (launch 
vehicle) 

–  Autonomously enforce convexity 
 

•  Explore different optimization algorithms and frameworks 


